

20L | 1310613-020 20L | 1310613-B20 208L | 1310613-208 1000L | 1310613-700

RAVENOL Catoel TO-4 SAE 30

Kategorie: Engine oil for agricultural vehicles and construct

Artikelnummer: 1310613

Viscosity: 30

Specification: API CF, API MT-1

Oil type: Mineral

Approvals: ZF TE-ML 03C (ZF001852), ZF TE-ML 07F (ZF001852) **Recommendation:** Allison C4, Caterpillar FD-1, Caterpillar TO-4, Caterpillar TO-4M, Eaton Fuller, Komatsu KES 07.868.1 (2002)

Application: Agricultural machinery

RAVENOL CATOEL TO-4 SAE 30 is a special oil for hydraulic- and transmission equipment.

RAVENOL CATOEL TO-4 SAE 30 fulfils the recommendations of Caterpillar TO-4 specification and is suitable for lubrication of power shift transmission, differentials, final drives and hydraulic equipment of earthmoving equipment, for which a Caterpillar TO-4 or Allison C-4 fluid is required.

Application Note

RAVENOL CATOEL TO-4 SAE 30 ensures maximum wear protection in various gears, such as side drives and differentials, optimized the friction coefficient in power shift transmissions, wet brakes and clutches and provides maximum service life of the units.

Characteristics

- · Highest wear protection
- · High oxidation stability
- Excellent viscosity-temperature behavior
- Optimization of friction coefficient behavior
- · Guarantees maximum life of the units

Technical Product Data

PROPERTY	UNIT	DATA	AUDIT
Density at 20 °C	kg/m³	880,1	EN ISO 12185
Colour		braun	VISUELL
Viscosity at 100 °C	mm²/s	11,5	DIN 51562-1
Viscosity at 40 °C	mm²/s	95,7	DIN 51562-1
Viscosity Index VI		108	DIN ISO 2909
Pourpoint	°C	-33	DIN ISO 3016
Flashpoint	°C	252	DIN EN ISO 2592

All indicated data are approximate values and are subject to the commercial fluctuations.